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We have formulated a dielectric response function for strongly coupled two-dimensional Coulomb liquids in
the T=0 quantum domain. The formulation is based on the classical quasilocalized charge approximation[G.
Kalman and K. I. Golden, Phys. Rev. A41, 5516(1990); K. I. Golden and G. Kalman, Phys. Plasmas7, 14
(2000)] and extends the QLCA formalism into the quantum domain. We calculate the dispersion of the
longitudinal plasmon mode forrs=10, 20, 40 and the resulting dispersion curves are compared with recent
experimental results. We also conjecture the possible existence of a new high-wave-number collective excita-
tion in close proximity to the right boundary of the pair continuum.
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I. INTRODUCTION

This paper addresses the problem of longitudinal collec-
tive mode dispersion in strongly coupled two-dimensional
(2D) Coulomb liquids at zero temperature. The 2D Coulomb
liquid is modeled as a one-component plasma(OCP) in
which charged particle motions in a uniform rigid neutraliz-
ing background are restricted to a plane having zero thick-
ness and large but bounded areaA. The Ns=nAd charges
interact via thef2Dsrd=e2/«sr Coulomb potential,r being
the in-plane separation distance and«s the dielectric constant
of the substrate;f2Dsqd=2pe2/ s«sqd is its Fourier transform.
In the zero-temperature quantum domain, the customary
measure of the coupling strength isrs=a/aB, where a
=1/Îpn is the Wigner-Seitz radius andaB=«s"

2/ sme2d is the
effective Bohr radius;«F=pn"2/m is the Fermi energy of the
noninteracting 2D electron gas andkF=Î2pn is the 2D
Fermi wave number.

The important question of the dynamics of strong Cou-
lomb interactions and how they affect the dispersion of col-
lective modes in strongly coupled 2D Coulomb liquids is one
that has received a great deal of attention primarily from
theorists[1–15] over the past three decades. Interest in this
problem is further intensified by recent inelastic light scatter-
ing experiments[16,17] that, for the first time, provide mea-
surements of plasmon dispersion in ultralow density 2D elec-
tron systems in GaAs quantum wells at finite temperatures.

In the high-temperature classical(CL) domain, theoretical
calculations of the dielectric function,«sq ,vd, and disper-
sion and damping of the collective modes have been carried
out [CL(i)] by following a microscopic hydrodynamic ap-
proach [2], [CL(ii )] by adapting the conventional three-
dimensional(3D) Singwi-Tosi-Land-Sjolander(STLS) [18]
mean-field-theory approach to the 2D OCP[3], [CL(iii )] by

an approximation scheme that combines the quadratic
fluctuation-dissipation theorem with linearized moment
equations featuring three-point dynamical structure functions
[5], [CL(iv)] by adapting the quasilocalized charge approxi-
mation (QLCA) approach[11,19] to the 2D OCP[7], and
[CL(v)] by adapting the velocity-average-approximation
(VAA ) approach[20] to the 2D OCP in the weakly degener-
ate quantum domain[12]. Computer-generated data pertain-
ing to the dynamical structure function and collective mode
dispersion in the strongly coupled 2D classical OCP liquid
have been available since 1980 thanks to the molecular dy-
namics (MD) simulations of Totsuji and Kakeya[21] and
more recently by Kalmanet al. [22].

In the zero-temperature quantum(Q) domain, a variety of
approaches have been used as well for the calculation of the
2D dielectric response function and plasmon dispersion:
[Q(i)] At long-wavelengthssq→0d, the plasmon dispersion
has been inferred by supposing that it is sufficient to replace
«sq ,vd by its high-frequency sum rule expansion[4]. More
elaborate approaches have built on the concept of the local
field factorGsq ,vd. For finite-q values,[Q(ii )] an early ap-
proximation for the staticGsqd, due to Hubbard and Jonson

[1], was GHsqd=q/ s2Îq2+kF
2d. A more sophisticated static

local field correction has been formulated[Q(iii )] by adapt-
ing the classical STLS approach[18] to the 2D quantum
electron liquid [1,8,9]. Dynamical local field factors have
been formulated[Q(iv)] via a 2D quantum kinetic equation
treatment using a Mori memory function formalism that
takes account of the dynamics of the exchange-correlation
hole surrounding each electron[6], and[Q(v)] by adapting a
quantum mechanical version[23] of the STLS theory(the
“qSTLS”) to the 2D Coulomb liquid at zero temperature
[10].

At finite temperatures, motivated by the recent inelastic
light scattering experiments of Erikssonet al. [16] and Hir-
jibehedinet al. [17], Hwang and Das Sarma[13] proposed a
simple theoretical model for the calculation of 2D plasmon
dispersion. Based on the premise that finite temperature and
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correlation effects tend to cancel each other, Hwang and Das
Sarma suppose that the local field correction can be reason-
ably well represented by the finite-temperature 2D Hubbard
approximationGHsq ,Td=q/ (2Îq2+k0

2sTd), where k0sTd is
the finite temperature analogy of the 2D Fermi wave vector.
Yurtseveret al. [14] go further in that they formulate a dy-
namic local field correction,Gsq ,v ,Td, within a qSTLS
mean field theory framework inputted with the temperature-
dependent Hartree-Fock structure function(see Ref.[24] for
the temperature-dependent Lindhard function) to make their
calculation more tractable; the approximation scheme of Ref.
[14] is, in effect, a dynamical version of the static Hubbard
approximation to the local field correction. The 2D plasmon
dispersion curves that result from the latter two theoretical
approaches are in very good agreement with the experimen-
tal data[16,17].

Turning now to the strong coupling regime, it has been
known [5,7] for quite some time that the long-wavelength
sq→0d plasmon dispersion in strongly coupledfG
=Z2e2/ s«sakBTd@1g 2D classical electron liquids is entirely
controlled by the potential energy part of the third-
frequency-momentskv3ld sum rule coefficient[see Eqs.(7)
and(12) below] [4], which requires that, in theG→` limit,
the plasmon dispersion approach the 2D hexagonal lattice
[25] phonon frequency,

vPsq → 0duT=0
CRYSTAL = v2Dsqdf1 − 0.173qag; s1d

v2Dsqd=Î2pne2q/m is the 2D plasma frequency. The same
should hold for the zero-temperature 2D quantum electron
liquid in the rs→` limit. Out of the approximation schemes
listed above, only the Ref.[4] high-frequency sum rule ex-
pansion[Q(i)] satisfies this criterion. The resulting plasmon
sPd frequency can be calculated with the aid of the Ref.[26]
fitted Monte Carlo(MC) formula (14) for the correlation
energy. One obtains

uvPsq → 0durs→` = v2Dsqdf1 − 0.1694qag, s2d

which is in near agreement with the phonon dispersion for-
mula above. As to the STLS approximation scheme[Q(iii )],
the plasmon frequency

uvPsq → 0durs→`

STLS= v2Dsqdf1 − 0.2711qag

does not even come close to reproducing the correct long-
wavelength 2D Wigner crystal dispersion(1) in the rs→`
limit. The Hubbard approximation[Q(ii )] [1] underlying the
Ref. [13] calculation, in fact, does with a coefficient 0.177 in
Eq. (2). However, we believe this is coincidental. Moreover,
the Hubbard approximation, because it isrs independent,
leads to the obviously false conclusion that the non-RPA
correction is always the same for anyrs.

While the qSTLS treatment of Moudgilet al. [10] fails to
reproduce the exchange-correlation part of the third-
frequency-moment sum rule in the high-frequency limit, the
inaccuracies that accrue in their description of the plasmon
dispersion may be somewhat mitigated by the fact that these
calculations address the weak coupling regimersø3. As to
the more involved iterative quantum kinetic theory treatment
of Neilsonet al. [6], which does provide plasmon dispersion

results in the strong coupling regime 5ø rsø40, it is by no
means clear that the exchange-correlation part of thekv3l
sum rule coefficient can be recovered from their formalism
in the high-frequency limit.

The present work addresses the problem of constructing a
dielectric function for the 2D electron liquid based on a
physically correct microscopic model that, at the same time,
correctly represents the behavior of«sq ,vd in the strong
coupling regime. To realize this goal, we invoke the quasilo-
calized charge approximation(QLCA), an approximation
method that has proved to be consistently successful in the
description of collective mode dispersion in strongly coupled
classical Coulomb liquids as evidenced by comparison with
a series of MD simulations[11,21,22,27,28]; we contend that
the QLCA can be extended in a way that makes it suitable
for the description of collective mode dispersion in the quan-
tum domain.

The QLCA was formulated by two of the authors some
time ago [11,19] for the purpose of describing collective
mode dispersion in a variety of classical Coulomb liquid
configurations[11,19,29–31] in the strong coupling regime.
The basis of the formal development of the QLCA is that the
dominating feature of the physical state of the plasma with
G@1 is the quasilocalization of the charges. This physical
picture suggests a microscopic equation-of-motion model
where the particles are trapped in local potential fluctuations.
The particles occupy randomly located(but certainly not un-
correlated) sites and undergo oscillations around them. At the
same time, however, the site positions also change and a
continuous rearrangement of the underlying quasiequilibrium
configuration takes place. Inherent in the QLC model is the
assumption that the two time scales are well separated and
that for the description of the rapid oscillating motion, the
time average(converted into ensemble average) of the drift-
ing quasiequilibrium configuration is sufficient. For this con-
dition to be satisfied, it is necessary that the amplitude of the
excursion of the oscillations be much smaller than the
Wigner-Seitz radius; in Ref.[19] this is indeed shown to be
the case provided thatG@1.

In the application of the QLCA to a strongly coupled
charged-particle system in the quantum domain, the main
physical difference one should consider between the classical
and quantum behaviors is that in the latter the correlation-
induced localization is hampered by the increase in kinetic
energy that acts counter to the localization. Nevertheless, as
it will be shown below, the QLCA meets the stated objective
to the extent that it reproduces the exchange-correlation con-
tribution to thekv3l sum rule coefficient, thereby guarantee-
ing recovery of the correct oscillation frequency for arbitrary
q values in thers→` limit. What the QLCA fails to repro-
duce is the correlational increase of the kinetic energy dis-
cussed above. This is a problem, however, only for interme-
diate rs values: as rs→`, both the free-particle and
correlation contributions to the kinetic energy part[see Eqs.
(10) and (11) below] drop off like 1/rs

2 and 1/rs
3/2, respec-

tively, while the dominantOs1/rsd correlation and Hartree-
Fock exchange energy contributions to the interaction energy
part [see Eqs.(6), (10), and(12) below] of the kv3l sum rule
coefficient add to give the Madelung energy asOs1/rsd.
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It is interesting to note that what one finds at zero tem-
perature, namely that the softening of the plasmon dispersion
by exchange correlation is partially offset by the average
kinetic energy, is not dissimilar to the cancellation at finite
temperatures between the temperature enhanced kinetic en-
ergy and correlation effects[13,17]. In the present work, we
will, with reference to relevant experimental data[17], dem-
onstrate that, in the strong coupling regime, it is the third-
frequency-momentskv3ld sum rule coefficient containing
these two competing effects that plays the central role in the
2D plasmon dispersion at finite-q values.

The paper is organized in four sections. In Sec. II, we
develop the dielectric response function,«sq ,vd, for strongly
coupled 2D Coulomb liquids in the zero-temperature quan-
tum domain. In Sec. III, we calculate the finite-q plasmon
dispersion from the zeros of«sq ,vd using available quantum
MC data for the pair distribution function[26]. We will then
compare the resulting finite-q theoretical plasmon dispersion
curves with relevant Ref.[17] experimental data, and we will
analyze the role the correlational part of the kinetic energy
plays in the dispersion via thekv3l sum rule coefficient.
Conclusions are drawn in Sec. IV.

II. DIELECTRIC RESPONSE FUNCTION

In this section, we formulate the dielectric response func-
tion for the description of collective mode dispersion in
strongly coupled 2D Coulomb liquids at zero-temperature in
the normal fluid phase. The starting point for the develop-
ment is the classical(cl) dielectric function that results from
the QLCA,

u«sq,vducl = 1 −
f2Dsqdfnq2/mv2g

1 + f2Dsqdfnq2/mv2gGQLCAsqd
. s3d

Equation (3) is derived from the microscopic equation of
motion for the collective coordinatesjq, defined through the
Fourier representationjistd=s1/ÎNmdoqjqstdexpsiq ·xid re-
lating jq to theith-particle displacementji; see Refs.[11,19]
for the details.

The QLCA static local field correction in Eq.(3),

Gsqd = −
1

N
o
q8

sq · q8d2

q3q8
fSsuq − q8ud − Ssq8dg s4ad

=1 −
1

2q
E
0

`

dr
1

r2gsrdF1 − 4J0sqrd + 6
J1sqrd

qr
G ,

s4bd

is expressed in terms of static structure functionsSsqd, or,
equivalently, in terms of the pair distribution function

gsrd = 1 −
1

N
oq

f1 − Ssqdgexpsiq · r d. s5d

At long wavelengths,(4) simplifies to

Gsq → 0d =
5

16

ukVlu
se2/ad

qa; s6d

kVl =
1

2A
o
q

f2DsqdfSsqd − 1g s7d

is the potential energy per particle. The derivation of Eq.(3)
is predicated on the assumption that thermal motions are
negligible: this is a reasonable assumption for a classical
charged-particle system in the strong coupling regime where
the potential energy dominates. In contrast, for a degenerate
system, this certainly is not the case and one should therefore
take account of the equilibrium momenta of the particles. In
Eq. (3), thenq2/ smv2d factor is readily identified as the Vla-
sov density response function for momentum distribution
functionfspd,ndspd. One may therefore assume that for a
Fermi distribution of momenta, the appropriate replacement
for nq2/ smv2d is the Lindhard function

x0sq,vd =
2

"A
o
p

fsup + s1/2dqud − fsup − s1/2dqud
v + s"/mdp ·q + ih

, s8d

and the resulting dielectric response function takes the famil-
iar form

«sq,vd = 1 −
f2Dsqdx0sq,vd

1 + f2Dsqdx0sq,vdGsqd
. s9d

The local field factor in Eq.(9) is formally identical to the
Gsqdin Eq. (4), but it should be borne in mind thatgsrd is
now the pair distribution function appropriate for the 2D
zero-temperature electron liquid in the normal fluid phase(as
determined, e.g., by Tanatar and Ceperley[26]) and as such,
it embodies all the exchange-correlation effects. Conse-
quently, the«sq ,vd of Eq. (9) now satisfies, to leading order
in rs, the third-frequency-moment sum rule with coefficient

kv3lsqd =
1

pf2DsqdE
−`

`

dv v3 Im
1

«sq,vd

= −
nq2

m
Hv2D

2 sqdf1 − Gsqdg +
3q2

m
kEkinl + F"q2

2m
G2J ,

s10d

kEkinl=e2«kin/ s2aBd is the expectation value of the kinetic
energy per particle for theinteractingsystem consisting of a
noninteracting(0) part and a correlational(c) part,

«kin = «kin
0 + «kin

c ,

«kin
0 =

1

rs
2, «kin

c = −
]

]rs
srs«cd, s11d

«kin and «c are the kinetic and the correlation energies per
particle in Rydberg units. Note that the leading contribution
to «c drops off like 1/rs, whereas«kin

c drops off like 1/rs
3/2.

We also note thatkVl=e2«int / s2aBd of Eq. (7), now repre-
sents the total interaction energy consisting of the Hartree-
Fock exchange and potential energy contributions,

«int = «ex + «pot,
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«ex = −
8Î2

3prs
, «pot =

1

rs

]

]rs
srs

2«cd sRydd. s12d

As a reminder, the ground-state energy per particle,«total, can
be written as

«total = «kin
0 + «ex + «c = «kin + «int. s13d

Going beyond the leading order inrs, the dielectric func-
tion (9) cannot reproduce the correlational part,«kin

c , of the
kinetic energy contribution(11) to the sum rule coefficient
(10) (in contrast to the classical regime where the kinetic
energy is unaffected by particle correlations, i.e.,kEkinl
=kBT).

Finally, we note that Eq.(4) is consistent with theq→`
limit of the Kimball identity [32],

lim
q→`

f1 − Gsqdg = gsr = 0d, s14d

valid for any static local field correctionGsqd that one may
use to approximate the exactGsq ,vd for all values ofv.

III. COLLECTIVE MODE DISPERSION

We turn now to the calculation of collective mode disper-
sion in the 2D degenerate electron liquid in the strong cou-
pling regime. For the zero-temperaturex0sq ,vd in (9), we
use the results of Stern[33] and Isihara[34]. The mode
frequency in the regionv̄ù2q̄+ q̄2 above the left boundary
of the pair continuum is obtained by equating to zero the
dielectric response function(9) with x0sq ,vd given by
[33,34]

x0sq,vd = −
m

p"2H1 +
1

2q̄2fÎsv̄ − q̄2d2 − 4q̄2

− Îsv̄ + q̄2d2 − 4q̄2gJ . s15d

At long wavelengths, we obtain

vPsq → 0d
v2Dsqd

= 1 +
3rs

8
«kin

0 qa+
5rs

64
«intqa. s16d

The third right-hand-side member is the part originating
from Gsq→0d given by Eqs.(6) and (12). As has been
pointed out above, the correlational part of the kinetic energy
[represented by the second right-hand-side member of Eq.
(11)] is missing fromGsqd; the same defect shows up in Eq.
(16). Since this last contribution would act toincreasethe
kinetic energy, Eq.(16) evidently overestimates the depres-
sion (softening) of the dispersion curve that arises from the
effect of exchange and correlations. In theq→0 domain,
with the aid of the Ref.[26] MC fitted formula(14) for the
correlation energy, we calculate this overestimate to be ap-
proximately 30% atrs=20, decreasing to 23% atrs=40. In
the rs→` limit, where the total kinetic energy ceases to
contribute to the small-q dispersion, one recovers Eq.(2)
from the oscillation frequency(16).

For the analysis of the plasmon dispersion at finite-q val-
ues, it is convenient to introduce the dimensionless quantities

q̄=q/kF and v̄=v /vF, where kF=Î2pn is the 2D Fermi
wave number and"vF=«F. As is always the case whenever
the random-phase approximation(RPA) is modified by a
static local field correction, the dielectric function(9) does
not take account of collisional(multipair excitations) damp-
ing, leaving Landau damping as the sole mechanism respon-
sible for the decay of the collective excitations in the present
study. At zero temperature, the Landau damping is confined
to the pair continuum region of theq̄, v̄ plane. Forv̄ù0, the
equations for the left and right boundaries of the continuum
region are given byv̄=2q̄+ q̄2 andv̄=−2q̄+ q̄2, respectively.

For a fixed value ofrs, Gsqd is calculated from Eq.(4b)
with the input of the Ref.[26] quantum MC data forgsrd of
the 2D electron gas in the normal fluid phase; the resulting
curves, displayed in Fig. 1 forrs=10, 20, 40, showGsqd to
be a monotonically increasing function ranging from zero to
unity. To further check the accuracy of Fig. 1, independent
calculations ofGsq→0d from Eqs. (6) and (12) using the
Ref. [26] fitted MC formula(14) for the correlation energy
show excellent agreement with Fig. 1 up toqa<1.

The subsequent straightforward calculation of the plas-
mon oscillation frequency in the regionv̄ù2q̄+ q̄2, q̄ù0 is
then carried out by substituting the Lindhard density re-
sponse function(15) into (9) and setting«sq̄,v̄d=0. The re-
sulting dispersion curves are displayed in Fig. 2 along with
their RPA counterparts forrs=10, 20, and 40. Also shown in
Fig. 2 are the most relevant experimental dispersion data
available from Ref.[17] for rs=15.2, TF=0.5393 K, andT
=0.25 K. To make a meaningful comparison with the zero-
temperature dispersion curves possible, we introduce the ef-
fective coupling parameterrs

* =rsf1−exps−TF /Tdg. The justi-
fication for this choice follows from the fact that the
compressibility sum rule for the 2D electron liquid is ex-
pressible in terms ofrs

* for any temperature[35]. With this
replacement, we assign the calculatedrs

* =13.44 value to the
Fig. 2 data points. As a result, we find a fair, but by no means
exact, agreement between theory and experiment with the
data points lying close to thers=20 curve.

In order to try to understand the origin of this discrepancy,
we re-calculate the plasmon dispersion per the prescription
of Ref. [4] with the local field factorGsqd in Eq. (9) replaced

by a tentative local field factor,G̃sqd, that accounts for the

FIG. 1. Static local field correction,Gsqd, as a function ofqa for
rs=10,20,40;a=1/Îpn. Gsqd is calculated from Eq.(4b) inputted
with the Ref.[26] quantum Monte Carlo data for the pair distribu-
tion functiongsrd.
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missing correlational part of the kinetic energy, in full com-
pliance with the third-frequency-moment sum rule:

G̃sqd = Gsqd −
3rs

2Î2
«kin

c q̄. s17d

It should be noted that Eq.(17) in fact representsGsq ,v
→ ` d since it is derived from the high-frequency sum rule
and, as such, should provide a correct representation of
«sq ,vd and the plasmon dispersion relation in that limit. In
contrast, other representations of the local field factor with
the inclusion of the correlational part of the kinetic energy
term[36,37], where this latter term appears with the opposite
sign and a different numerical coefficient, correspond to
Gsq ,v=0d appropriate only for the analysis of static proper-
ties. For a comprehensive discussion of this issue, see Ref.
[37].

Should we consider the behavior ofG̃sqd for q→`, the
linear structure of the correction term in(17) would have to
break down in order to ensure compliance with the
Rajagopal-Kimball identity(14), with the correlational part
of the kinetic energy appearing in a different guise in the
local field factor. We may, however, assume that the repre-
sentation(17) reasonably well approximates the static local
field factor up toq̄<1.5. Then calculating«c and its first
derivative with respect tors from the Ref.[26] fitted MC
formula (14), we can generate amended dispersion curves
from Eq. (17). These are displayed in Fig. 3. Now, we ob-
serve that the samers

* =13.44 experimental data points lie
between thers=10, 20 theory curves. This supports our
claim that in the strong coupling(low density) regime, the
plasmon dispersion is entirely controlled by the competing
exchange-correlation and kinetic energy effects in the third-
frequency-moment sum rule coefficient. At long wave-
lengths, the combination of Eqs.(6) and (17) with (9) and
(15) necessarily provides

vPsq → 0d
v2Dsqd

= 1 +
3rs

8
«kinqa+

5rs

64
«intqa, s18d

in agreement with the plasmon frequency calculated by Iwa-
moto et al. [4] from the high-frequency sum rule expansion.
Note the difference between the kinetic energy terms in Eqs.
(18) and (16). Substituting the Ref.[26] fitted MC formula
(14) for the correlation energy into Eq.(18), our calculations
indicate that(i) at rs=10, the kinetic energy overwhelms the
softening effect of the potential energy,«pot, on the plasmon
dispersion;(ii ) at rs=20, the kinetic energy and potential
energy contributions cancel each other leaving only the ex-
change to soften the plasmon dispersion;(iii ) however, at
rs=40, only a portion of the potential energy is cancelled by
the kinetic energy. Note that thers=40 dispersion curve that
has been included in Figs. 2 and 3, mostly for illustrative
purposes, represents in a way an unstable liquid phase since
the transition to a 2D Wigner crystal is believed to occur at
rs=37.

In a strongly coupled Coulomb liquid, for sufficiently
high coupling, the isothermal compressibility becomes nega-
tive. As a result, the static dielectric response function,
«sq̄,0d, also becomes negative somewhere in the interval
0, q̄, q̄0, whereq̄0 is in the vicinity of or greater than the
reciprocal lattice vector of the incipient Wigner lattice and
«sq̄,0d develops poles both atq̄=0 and atq̄= q̄0. (For a clas-
sical 2D OCP, see Ref.[38] and for the 3D electron gas, see
Ref. [39].) This latter pole is expected to survive for«sq̄,v̄d
dynamical. Now, it is known that the appearance of a pole in
«sq̄,v̄d is the indicator of a resonance in the single-particle
dynamical spectrum and, as such, can have a profound effect
on the collective mode dispersion(as borne out, for example,
by the well-known cyclotron resonance in magnetized plas-
mas). In order to identify this pole in the case of the 2D
zero-temperature Coulomb liquid, we analyze«sq̄,v̄d in the

FIG. 2. Plasmon dispersion curves forrs=10,20,40 in the re-
gion v̄ù2q̄+ q̄2 above the left boundary of the RPA pair continuum
region (hachured); q̄=q/kF, v̄=v /vF; kF=Î2pn, "vF=«F

=pn"2/m. The solid curves are calculated from Eqs.(9) and (15),
with Gsqd calculated from(4b) using the Ref.[26] quantum Monte
Carlo (MC) data for the pair distribution function,gsrd, of the elec-
tron gas in the normal fluid phase. The dashed RPA curves are
calculated from Eq.(9) with Gsqd set equal to zero. The Ref.[17]
experimental data points(solid circles) correspond to an effective
rs

* =13.44.

FIG. 3. Plasmon dispersion curves forrs=10,20,40 in the re-
gion v̄ù2q̄+ q̄2 above the left boundary of the RPA pair continuum
region(hachured). The solid curves are calculated from Eqs.(9) and

(15), with G̃sqd calculated from(17) and (4b) using the Ref.[26]
QMC data forgsrd in the normal fluid phase and the Ref.[26] MC

fitted formula (14) for the correlation energy per particle;G̃sqd
replacesGsqd in (9). The dashed RPAfGsqd=0g curves are calcu-
lated from Eq.(9) with Gsqd set equal to zero. The Ref.[17] ex-
perimental data points(solid circles) correspond to an effectivers

*

=13.44.

DIELECTRIC RESPONSE FUNCTION AND PLASMON… PHYSICAL REVIEW E 70, 026406(2004)

026406-5



region 0øv̄ø−2q̄+ q̄2, q̄ù2 below the right boundary of
the pair continuum, where[33,34]

x0sq,vd = −
m

p"2H1 −
1

2q̄2fÎsv̄ − q̄2d2 − 4q̄2

+ Îsv̄ + q̄2d2 − 4q̄2gJ . s19d

From (19), we observe thatx0sq̄,v̄=−2q̄+ q̄2d is always
negative on the right boundary of the pair continuum. Then
according to(9), «sq̄,−2q̄+ q̄2d has a discontinuity at someq̄,
say q̄*srsd, where its denominator 1+f2Dsqdx0sq̄,−2q̄
+ q̄2dGsq̄d is zero. The location of the vertical asymptote of
the discontinuity atq̄*srsd, is shown in Fig. 4. Its continuation
as first-order poles into the 0øv̄,−2q̄+ q̄2, q̄ù2 domain
(portrayed by Fig. 5) is a consequence of the fact that
x0sq ,vd remains negative throughout that entire domain. For
a givenrs, the locusv̄*sq̄d of all such poles fromv̄* =0 up to
the right boundaryv̄* =−2q̄* + q̄*

2 then forms the family of
curves shown in Fig. 6. Evidently, the total charge density
perturbation is perfectly screened for theseq,v values. Fur-
ther analysis shows that the poles persist forrs values all the
way down toÎ2/Gsq̄=2d<1.96. This critical value com-
pares favorably with the Hartree-Fockrs=p /Î2=2.22 pre-
diction [40,41], and with the MCrs,2.03 value[26] and
experimentally observed valuers=1.71 [41] for the onset of
negative compressibility. Note that while the location of the
poles is contingent upon the structure of the chosen local
field Gsq̄d, their very existence is not particularly sensitive to
this choice: any positiveGsqd will lead to the same kind of
discontinuity in the dielectric response function.

We may now conjecture that the existence of the reso-
nance leads to the emergence of a new collective excitation,
to be referred to in the sequel as the high-q mode. The anal-
ogy with the cyclotron resonance again can be usefully in-
voked: there, the resonance at the cyclotron frequencyvc

leads to the upper hybrid frequencyvU=Îv2D
2 sqd+vc

2, a col-
lective excitation generated by the coupling ofvc to the
plasma frequencyv2Dsqd.

To clarify the physical origin of the conjectured excita-
tion, we suggest that the governing mechanism is related to

the fact that the existence of the pole in«sq̄,0d at q̄= q̄0 is
indicative of the system’s propensity to develop a charge-
density wave(CDW) with a wave number in the vicinity of
q̄0. While a CDW does not develop for an OCP in the static

FIG. 4. Re«sq̄,v̄d as a function ofq̄ on the right boundary,v̄
=−2q̄+ q̄2, of the continuum region. Note the rightward progression
of the vertical asymptote along the boundary asrs increases from 10
to 40.

FIG. 5. In the region 0øv̄ø−2q̄+ q̄2, q̄ù2: Re«sq̄,v̄d as a
function of q̄ for the three indicated values ofv̄ in each of the three
graphs. Note the rightward progression of the vertical asymptote
with increasingv̄. (a) rs=10, (b) rs=20, (c) rs=40.

FIG. 6. In the region 0øv̄ø−2q̄+ q̄2, q̄ù2: Loci of first-order
poles of the dielectric response function,«sq̄,v̄d, for rs=10,20,40
calculated from Eqs.(9), (4b), and (19) and inferred from Figs. 4
and 5.
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limit, it can be brought into existence by the introduction of
a second species of(weakly correlated) charges which can
provide an additional static screening. A similar situation
seems to arise once dynamical behavior is considered. When
a traveling periodic potential develops at this wave number,
then it is the motion of the particles in the troughs of this
potential that is responsible for the appearance of the single-
particle frequencyv̄*sq̄; rsd, the generator of the high-q
mode. While it is unclear that this excitation would develop
in an OCP, our preliminary analysis indicates that, in the
presence of a second component, an undamped high-q exci-
tation would develop in close proximity to the right bound-
ary of the pair continuum. It should be noted that the pro-
posed scenario is appropriate only in the liquid phase: both
strong coupling(absent in the gaseous phase) and particle
mobility (absent in the solid phase) are needed to support the
underlying dynamics.

IV. CONCLUSIONS

In this paper, we have analyzed the longitudinal collective
mode dispersion in strongly coupledsrs@1d 2D Coulomb
liquids at zero temperature. The analysis is based on an ex-
tension of the classical quasilocalized charge approximation
(QLCA) [11,19] into the quantum domain. The basis of the
formal microscopic development of the QLCA is that the
dominating feature of the physical state of strongly coupled
Coulomb liquids is the quasilocalization of the charges. The
static local field factor,Gsqd, given by(4a) and(4b), satisfies
the Rajagopal-Kimball condition(14) for any rs value and
the Eq.(9) dielectric response function,«sq ,vd, satisfies the
third-frequency-moment sum rule in thers→` limit. For
finite rs values, however,«sq ,vd fails to reproduce the cor-
relational part of the kinetic energy in thekv3l sum rule

coefficient. The dispersion relation derived from«sq ,vd is in
fair qualitative agreement with recent experimental results
[17]. The agreement is improved by anad hocaddition of the
correlational part of the kinetic energy toGsqd. In evaluating
the local field factor, we have used the pair distribution func-
tion and correlation energy quantum Monte Carlo data from
Ref. [26]. The numerical results for the improved dispersion
curves are in very good agreement with the inelastic light-
scattering data of Ref.[17].

While other theories[13,14] have recently been put for-
ward to provide the theoretical underpinnings of the Refs.
[14,16] experimental results, the present work is the only
approach to collective mode dispersion having both a micro-
scopic basis and a rigorous compliance with the two high-
frequency sum rules in thers→` limit.

An unexpected result emerging from our analysis is the
possible existence of a new high-q longitudinal collective
excitation in close proximity to the right boundary of the pair
continuum. The physical origin of this excitation seems to
originate from the negative compressibilty and the associated
dynamical charge-density wave that develops in strongly
coupled two-component Coulomb liquids for sufficiently
high coupling values.
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